Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Rev Endocrinol ; 19(4): 217-231, 2023 04.
Article in English | MEDLINE | ID: covidwho-2269716

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has a clear sex disparity in clinical outcomes. Hence, the interaction between sex hormones, virus entry receptors and immune responses has attracted major interest as a target for the prevention and treatment of SARS-CoV-2 infections. This Review summarizes the current understanding of the roles of androgens, oestrogens and progesterone in the regulation of virus entry receptors and disease progression of coronavirus disease 2019 (COVID-19) as well as their therapeutic value. Although many experimental and clinical studies have analysed potential mechanisms by which female sex hormones might provide protection against SARS-CoV-2 infectivity, there is currently no clear evidence for a sex-specific expression of virus entry receptors. In addition, reports describing an influence of oestrogen, progesterone and androgens on the course of COVID-19 vary widely. Current data also do not support the administration of oestradiol in COVID-19. The conflicting evidence and lack of consensus results from a paucity of mechanistic studies and clinical trials reporting sex-disaggregated data. Further, the influence of variables beyond biological factors (sex), such as sociocultural factors (gender), on COVID-19 manifestations has not been investigated. Future research will have to fill this knowledge gap as the influence of sex and gender on COVID-19 will be essential to understanding and managing the long-term consequences of this pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Female , Humans , Progesterone , Gonadal Steroid Hormones , Androgens , Receptors, Virus
2.
Diagn Progn Res ; 6(1): 22, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116672

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic demands reliable prognostic models for estimating the risk of long COVID. We developed and validated a prediction model to estimate the probability of known common long COVID symptoms at least 60 days after acute COVID-19. METHODS: The prognostic model was built based on data from a multicentre prospective Swiss cohort study. Included were adult patients diagnosed with COVID-19 between February and December 2020 and treated as outpatients, at ward or intensive/intermediate care unit. Perceived long-term health impairments, including reduced exercise tolerance/reduced resilience, shortness of breath and/or tiredness (REST), were assessed after a follow-up time between 60 and 425 days. The data set was split into a derivation and a geographical validation cohort. Predictors were selected out of twelve candidate predictors based on three methods, namely the augmented backward elimination (ABE) method, the adaptive best-subset selection (ABESS) method and model-based recursive partitioning (MBRP) approach. Model performance was assessed with the scaled Brier score, concordance c statistic and calibration plot. The final prognostic model was determined based on best model performance. RESULTS: In total, 2799 patients were included in the analysis, of which 1588 patients were in the derivation cohort and 1211 patients in the validation cohort. The REST prevalence was similar between the cohorts with 21.6% (n = 343) in the derivation cohort and 22.1% (n = 268) in the validation cohort. The same predictors were selected with the ABE and ABESS approach. The final prognostic model was based on the ABE and ABESS selected predictors. The corresponding scaled Brier score in the validation cohort was 18.74%, model discrimination was 0.78 (95% CI: 0.75 to 0.81), calibration slope was 0.92 (95% CI: 0.78 to 1.06) and calibration intercept was -0.06 (95% CI: -0.22 to 0.09). CONCLUSION: The proposed model was validated to identify COVID-19-infected patients at high risk for REST symptoms. Before implementing the prognostic model in daily clinical practice, the conduct of an impact study is recommended.

4.
Sci Rep ; 11(1): 23993, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1585801

ABSTRACT

Previous work indicates that SARS-CoV-2 virus entry proteins angiotensin-converting enzyme 2 (ACE-2) and the cell surface transmembrane protease serine 2 (TMPRSS-2) are regulated by sex hormones. However, clinical studies addressing this association have yielded conflicting results. We sought to analyze the impact of sex hormones, age, and cardiovascular disease on ACE-2 and TMPRSS-2 expression in different mouse models. ACE-2 and TMPRSS-2 expression was analyzed by immunostaining in a variety of tissues obtained from FVB/N mice undergoing either gonadectomy or sham-surgery and being subjected to ischemia-reperfusion injury or transverse aortic constriction surgery. In lung tissues sex did not have a significant impact on the expression of ACE-2 and TMPRSS-2. On the contrary, following myocardial injury, female sex was associated to a lower expression of ACE-2 at the level of the kidney tubules. In addition, after myocardial injury, a significant correlation between younger age and higher expression of both ACE-2 and TMPRSS-2 was observed for lung alveoli and bronchioli, kidney tubules, and liver sinusoids. Our experimental data indicate that gonadal hormones and biological sex do not alter ACE-2 and TMPRSS-2 expression in the respiratory tract in mice, independent of disease state. Thus, sex differences in ACE-2 and TMPRSS-2 protein expression observed in mice may not explain the higher disease burden of COVID-19 among men.


Subject(s)
Aging/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Cardiomyopathies/metabolism , Castration/adverse effects , Serine Endopeptidases/metabolism , Animals , Bronchioles/metabolism , Disease Models, Animal , Female , Gene Expression Regulation , Kidney Tubules/metabolism , Liver/metabolism , Male , Mice , Pulmonary Alveoli/metabolism , Virus Internalization
5.
Cardiovasc Res ; 117(2): 367-385, 2021 01 21.
Article in English | MEDLINE | ID: covidwho-1254643

ABSTRACT

Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here.


Subject(s)
Health Status Disparities , Myocardial Ischemia/epidemiology , Translational Research, Biomedical , Animals , Comorbidity , Disease Models, Animal , Female , Humans , Male , Myocardial Ischemia/diagnosis , Myocardial Ischemia/physiopathology , Risk Assessment , Risk Factors , Sex Characteristics , Sex Factors , Species Specificity
7.
Biol Sex Differ ; 11(1): 29, 2020 05 25.
Article in English | MEDLINE | ID: covidwho-361353

ABSTRACT

BACKGROUND: Emerging evidence from China suggests that coronavirus disease 2019 (COVID-19) is deadlier for infected men than women with a 2.8% fatality rate being reported in Chinese men versus 1.7% in women. Further, sex-disaggregated data for COVID-19 in several European countries show a similar number of cases between the sexes, but more severe outcomes in aged men. Case fatality is highest in men with pre-existing cardiovascular conditions. The mechanisms accounting for the reduced case fatality rate in women are currently unclear but may offer potential to develop novel risk stratification tools and therapeutic options for women and men. CONTENT: The present review summarizes latest clinical and epidemiological evidence for gender and sex differences in COVID-19 from Europe and China. We discuss potential sex-specific mechanisms modulating the course of disease, such as hormone-regulated expression of genes encoding for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) entry receptors angiotensin converting enzyme (ACE) 2 receptor and TMPRSS2 as well as sex hormone-driven innate and adaptive immune responses and immunoaging. Finally, we elucidate the impact of gender-specific lifestyle, health behavior, psychological stress, and socioeconomic conditions on COVID-19 and discuss sex specific aspects of antiviral therapies. CONCLUSION: The sex and gender disparities observed in COVID-19 vulnerability emphasize the need to better understand the impact of sex and gender on incidence and case fatality of the disease and to tailor treatment according to sex and gender. The ongoing and planned prophylactic and therapeutic treatment studies must include prospective sex- and gender-sensitive analyses.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/therapy , Europe , Female , Humans , Male , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Pneumonia, Viral/therapy , Risk Factors , SARS-CoV-2 , Serine Endopeptidases/metabolism , Sex Characteristics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL